NAME
gg-queue, GG_SLIST_HEAD, GG_SLIST_HEAD_INITIALIZER, GG_SLIST_ENTRY,
GG_SLIST_INIT2, GG_SLIST_INSERT_AFTER, GG_SLIST_INSERT_HEAD,
GG_SLIST_REMOVE_HEAD, GG_SLIST_REMOVE, GG_SLIST_FOREACH,
GG_SLIST_EMPTY, GG_SLIST_FIRST, GG_SLIST_NEXT, GG_SIMPLEQ_HEAD,
GG_SIMPLEQ_HEAD_INITIALIZER, GG_SIMPLEQ_ENTRY, GG_SIMPLEQ_INIT,
GG_SIMPLEQ_INSERT_HEAD, GG_SIMPLEQ_INSERT_TAIL,
GG_SIMPLEQ_INSERT_AFTER, GG_SIMPLEQ_REMOVE_HEAD, GG_SIMPLEQ_REMOVE,
GG_SIMPLEQ_FOREACH, GG_SIMPLEQ_EMPTY, GG_SIMPLEQ_FIRST,
GG_SIMPLEQ_NEXT, GG_LIST_HEAD, GG_LIST_HEAD_INITIALIZER, GG_LIST_ENTRY,
GG_LIST_INIT, GG_LIST_INSERT_AFTER, GG_LIST_INSERT_BEFORE,
GG_LIST_INSERT_HEAD, GG_LIST_REMOVE, GG_LIST_FOREACH, GG_LIST_EMPTY,
GG_LIST_FIRST, GG_LIST_NEXT, GG_TAILQ_HEAD, GG_TAILQ_HEAD_INITIALIZER,
GG_TAILQ_ENTRY, GG_TAILQ_INIT, GG_TAILQ_INSERT_HEAD,
GG_TAILQ_INSERT_TAIL, GG_TAILQ_INSERT_AFTER, GG_TAILQ_INSERT_BEFORE,
GG_TAILQ_REMOVE, GG_TAILQ_FOREACH, GG_TAILQ_FOREACH_REVERSE,
GG_TAILQ_EMPTY, GG_TAILQ_FIRST, GG_TAILQ_NEXT, GG_TAILQ_LAST,
GG_TAILQ_PREV, GG_CIRCLEQ_HEAD, GG_CIRCLEQ_HEAD_INITIALIZER,
GG_CIRCLEQ_ENTRY, GG_CIRCLEQ_INIT, GG_CIRCLEQ_INSERT_AFTER,
GG_CIRCLEQ_INSERT_BEFORE, GG_CIRCLEQ_INSERT_HEAD,
GG_CIRCLEQ_INSERT_TAIL, GG_CIRCLEQ_REMOVE, GG_CIRCLEQ_FOREACH,
GG_CIRCLEQ_FOREACH_REVERSE, GG_CIRCLEQ_EMPTY, GG_CIRCLEQ_FIRST,
GG_CIRCLEQ_LAST, GG_CIRCLEQ_NEXT, GG_CIRCLEQ_PREV - implementations of
singly-linked lists, simple queues, lists, tail queues, and circular
queues
SYNOPSIS
#include <ggi/gg-queue.h>
GG_SLIST_HEAD(HEADNAME, TYPE);
GG_SLIST_HEAD_INITIALIZER(head);
GG_SLIST_ENTRY(TYPE);
GG_SLIST_INIT(GG_SLIST_HEAD *head);
GG_SLIST_INSERT_AFTER(TYPE *listelm, TYPE *elm, GG_SLIST_ENTRY NAME);
GG_SLIST_INSERT_HEAD(GG_SLIST_HEAD *head, TYPE *elm, GG_SLIST_ENTRY NAME);
GG_SLIST_REMOVE_HEAD(GG_SLIST_HEAD *head, GG_SLIST_ENTRY NAME);
GG_SLIST_REMOVE(GG_SLIST_HEAD *head, TYPE *elm, TYPE, GG_SLIST_ENTRY NAME);
GG_SLIST_FOREACH(TYPE *var, GG_SLIST_HEAD *head, GG_SLIST_ENTRY NAME);
int
GG_SLIST_EMPTY(GG_SLIST_HEAD *head);
TYPE *
GG_SLIST_FIRST(GG_SLIST_HEAD *head);
TYPE *
GG_SLIST_NEXT(TYPE *elm, GG_SLIST_ENTRY NAME);
GG_SIMPLEQ_HEAD(HEADNAME, TYPE);
GG_SIMPLEQ_HEAD_INITIALIZER(head);
GG_SIMPLEQ_ENTRY(TYPE);
GG_SIMPLEQ_INIT(GG_SIMPLEQ_HEAD *head);
GG_SIMPLEQ_INSERT_HEAD(GG_SIMPLEQ_HEAD *head, TYPE *elm, GG_SIMPLEQ_ENTRY NAME);
GG_SIMPLEQ_INSERT_TAIL(GG_SIMPLEQ_HEAD *head, TYPE *elm, GG_SIMPLEQ_ENTRY NAME);
GG_SIMPLEQ_INSERT_AFTER(GG_SIMPLEQ_HEAD *head, TYPE *listelm, TYPE *elm,
GG_SIMPLEQ_ENTRY NAME);
GG_SIMPLEQ_REMOVE_HEAD(GG_SIMPLEQ_HEAD *head, GG_SIMPLEQ_ENTRY NAME);
GG_SIMPLEQ_REMOVE(GG_SIMPLEQ_HEAD *head, TYPE *elm, TYPE, GG_SIMPLEQ_ENTRY NAME);
GG_SIMPLEQ_FOREACH(TYPE *var, GG_SIMPLEQ_HEAD *head, GG_SIMPLEQ_ENTRY NAME);
int
GG_SIMPLEQ_EMPTY(GG_SIMPLEQ_HEAD *head);
TYPE *
GG_SIMPLEQ_FIRST(GG_SIMPLEQ_HEAD *head);
TYPE *
GG_SIMPLEQ_NEXT(TYPE *elm, GG_SIMPLEQ_ENTRY NAME);
GG_LIST_HEAD(HEADNAME, TYPE);
GG_LIST_HEAD_INITIALIZER(head);
GG_LIST_ENTRY(TYPE);
GG_LIST_INIT(GG_LIST_HEAD *head);
GG_LIST_INSERT_AFTER(TYPE *listelm, TYPE *elm, GG_LIST_ENTRY NAME);
GG_LIST_INSERT_BEFORE(TYPE *listelm, TYPE *elm, GG_LIST_ENTRY NAME);
GG_LIST_INSERT_HEAD(GG_LIST_HEAD *head, TYPE *elm, GG_LIST_ENTRY NAME);
GG_LIST_REMOVE(TYPE *elm, GG_LIST_ENTRY NAME);
GG_LIST_FOREACH(TYPE *var, GG_LIST_HEAD *head, GG_LIST_ENTRY NAME);
int
GG_LIST_EMPTY(GG_LIST_HEAD *head);
TYPE *
GG_LIST_FIRST(GG_LIST_HEAD *head);
TYPE *
GG_LIST_NEXT(TYPE *elm, GG_LIST_ENTRY NAME);
GG_TAILQ_HEAD(HEADNAME, TYPE);
GG_TAILQ_HEAD_INITIALIZER(head);
GG_TAILQ_ENTRY(TYPE);
GG_TAILQ_INIT(GG_TAILQ_HEAD *head);
GG_TAILQ_INSERT_HEAD(GG_TAILQ_HEAD *head, TYPE *elm, GG_TAILQ_ENTRY NAME);
GG_TAILQ_INSERT_TAIL(GG_TAILQ_HEAD *head, TYPE *elm, GG_TAILQ_ENTRY NAME);
GG_TAILQ_INSERT_AFTER(GG_TAILQ_HEAD *head, TYPE *listelm, TYPE *elm,
GG_TAILQ_ENTRY NAME);
GG_TAILQ_INSERT_BEFORE(TYPE *listelm, TYPE *elm, GG_TAILQ_ENTRY NAME);
GG_TAILQ_REMOVE(GG_TAILQ_HEAD *head, TYPE *elm, GG_TAILQ_ENTRY NAME);
GG_TAILQ_FOREACH(TYPE *var, GG_TAILQ_HEAD *head, GG_TAILQ_ENTRY NAME);
GG_TAILQ_FOREACH_REVERSE(TYPE *var, GG_TAILQ_HEAD *head, HEADNAME,
GG_TAILQ_ENTRY NAME);
int
GG_TAILQ_EMPTY(GG_TAILQ_HEAD *head);
TYPE *
GG_TAILQ_FIRST(GG_TAILQ_HEAD *head);
TYPE *
GG_TAILQ_NEXT(TYPE *elm, GG_TAILQ_ENTRY NAME);
TYPE *
GG_TAILQ_LAST(GG_TAILQ_HEAD *head, HEADNAME);
TYPE *
GG_TAILQ_PREV(TYPE *elm, HEADNAME, GG_TAILQ_ENTRY NAME);
GG_CIRCLEQ_HEAD(HEADNAME, TYPE);
GG_CIRCLEQ_HEAD_INITIALIZER(head);
GG_CIRCLEQ_ENTRY(TYPE);
GG_CIRCLEQ_INIT(GG_CIRCLEQ_HEAD *head);
GG_CIRCLEQ_INSERT_AFTER(GG_CIRCLEQ_HEAD *head, TYPE *listelm, TYPE *elm,
GG_CIRCLEQ_ENTRY NAME);
GG_CIRCLEQ_INSERT_BEFORE(GG_CIRCLEQ_HEAD *head, TYPE *listelm, TYPE *elm,
GG_CIRCLEQ_ENTRY NAME);
GG_CIRCLEQ_INSERT_HEAD(GG_CIRCLEQ_HEAD *head, TYPE *elm, GG_CIRCLEQ_ENTRY NAME);
GG_CIRCLEQ_INSERT_TAIL(GG_CIRCLEQ_HEAD *head, TYPE *elm, GG_CIRCLEQ_ENTRY NAME);
GG_CIRCLEQ_REMOVE(GG_CIRCLEQ_HEAD *head, TYPE *elm, GG_CIRCLEQ_ENTRY NAME);
GG_CIRCLEQ_FOREACH(TYPE *var, GG_CIRCLEQ_HEAD *head, GG_CIRCLEQ_ENTRY NAME);
GG_CIRCLEQ_FOREACH_REVERSE(TYPE *var, GG_CIRCLEQ_HEAD *head,
GG_CIRCLEQ_ENTRY NAME);
int
GG_CIRCLEQ_EMPTY(GG_CIRCLEQ_HEAD *head);
TYPE *
GG_CIRCLEQ_FIRST(GG_CIRCLEQ_HEAD *head);
TYPE *
GG_CIRCLEQ_LAST(GG_CIRCLEQ_HEAD *head);
TYPE *
GG_CIRCLEQ_NEXT(TYPE *elm, GG_CIRCLEQ_ENTRY NAME);
TYPE *
GG_CIRCLEQ_PREV(TYPE *elm, GG_CIRCLEQ_ENTRY NAME);
DESCRIPTION
These macros define and operate on five types of data structures:
singly- linked lists, simple queues, lists, tail queues, and circular
queues. All five structures support the following functionality:
1 Insertion of a new entry at the head of the list.
2 Insertion of a new entry before or after any element in the list.
3 Removal of any entry in the list.
4 Forward traversal through the list.
Singly-linked lists are the simplest of the five data structures and
support only the above functionality. Singly-linked lists are ideal
for applications with large datasets and few or no removals, or for
implementing a LIFO queue.
Simple queues add the following functionality:
1 Entries can be added at the end of a list.
However:
1 Entries may not be added before any element in the list.
2 All list insertions and removals must specify the head of the list.
3 Each head entry requires two pointers rather than one.
Simple queues are ideal for applications with large datasets and few or
no removals, or for implementing a FIFO queue.
All doubly linked types of data structures (lists, tail queues, and
circle queues) additionally allow:
1 Insertion of a new entry before any element in the list.
2 O(1) removal of any entry in the list.
However:
1 Each element requires two pointers rather than one.
2 Code size and execution time of operations (except for removal) is
about twice that of the singly-linked data-structures.
Linked lists are the simplest of the doubly linked data structures and
support only the above functionality over singly-linked lists.
Tail queues add the following functionality:
1 Entries can be added at the end of a list.
However:
1 All list insertions and removals, except insertion before another
element, must specify the head of the list.
2 Each head entry requires two pointers rather than one.
3 Code size is about 15% greater and operations run about 20% slower
than lists.
Circular queues add the following functionality:
1 Entries can be added at the end of a list.
2 They may be traversed backwards, from tail to head.
However:
1 All list insertions and removals must specify the head of the list.
2 Each head entry requires two pointers rather than one.
3 The termination condition for traversal is more complex.
4 Code size is about 40% greater and operations run about 45% slower
than lists.
In the macro definitions, TYPE is the name of a user defined structure,
that must contain a field of type GG_LIST_ENTRY, GG_SIMPLEQ_ENTRY,
GG_SLIST_ENTRY, GG_TAILQ_ENTRY, or GG_CIRCLEQ_ENTRY, named NAME. The
argument HEADNAME is the name of a user defined structure that must be
declared using the macros GG_LIST_HEAD, GG_SIMPLEQ_HEAD, GG_SLIST_HEAD,
GG_TAILQ_HEAD, or GG_CIRCLEQ_HEAD. See the examples below for further
explanation of how these macros are used.
SINGLY-LINKED LISTS
A singly-linked list is headed by a structure defined by the SLIST_HEAD
macro. This structure contains a single pointer to the first element on
the list. The elements are singly linked for minimum space and pointer
manipulation overhead at the expense of O(n) removal for arbitrary
elements. New elements can be added to the list after an existing
element or at the head of the list. An GG_SLIST_HEAD structure is
declared as follows:
GG_SLIST_HEAD(HEADNAME, TYPE) head;
where HEADNAME is the name of the structure to be defined, and TYPE is
the type of the elements to be linked into the list. A pointer to the
head of the list can later be declared as:
struct HEADNAME *headp;
(The names head and headp are user selectable.)
The macro GG_SLIST_HEAD_INITIALIZER evaluates to an initializer for the
list head.
The macro GG_SLIST_EMPTY evaluates to true if there are no elements in
the list.
The macro GG_SLIST_ENTRY declares a structure that connects the
elements in the list.
The macro GG_SLIST_FIRST returns the first element in the list or NULL
if the list is empty.
The macro GG_SLIST_FOREACH traverses the list referenced by head in the
forward direction, assigning each element in turn to var.
The macro GG_SLIST_INIT initializes the list referenced by head.
The macro GG_SLIST_INSERT_HEAD inserts the new element elm at the head
of the list.
The macro GG_SLIST_INSERT_AFTER inserts the new element elm after the
element listelm.
The macro GG_SLIST_NEXT returns the next element in the list.
The macro GG_SLIST_REMOVE removes the element elm from the list.
The macro GG_SLIST_REMOVE_HEAD removes the first element from the head
of the list. For optimum efficiency, elements being removed from the
head of the list should explicitly use this macro instead of the
generic GG_SLIST_REMOVE macro.
SINGLY-LINKED LIST EXAMPLE
GG_SLIST_HEAD(slisthead, entry) head =
GG_SLIST_HEAD_INITIALIZER(head);
struct slisthead *headp; /* Singly-linked List head. */
struct entry {
...
GG_SLIST_ENTRY(entry) entries; /* Singly-linked List. */
...
} *n1, *n2, *n3, *np;
GG_SLIST_INIT(&head); /* Initialize the list. */
n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
GG_SLIST_INSERT_HEAD(&head, n1, entries);
n2 = malloc(sizeof(struct entry)); /* Insert after. */
GG_SLIST_INSERT_AFTER(n1, n2, entries);
GG_SLIST_REMOVE(&head, n2, entry, entries);/* Deletion. */
free(n2);
n3 = GG_SLIST_FIRST(&head);
GG_SLIST_REMOVE_HEAD(&head, entries); /* Deletion from the head. */
free(n3);
/* Forward traversal. */
GG_SLIST_FOREACH(np, &head, entries)
np-> ...
while (!GG_SLIST_EMPTY(&head)) { /* List Deletion. */
n1 = GG_SLIST_FIRST(&head);
GG_SLIST_REMOVE_HEAD(&head, entries);
free(n1);
}
SIMPLE QUEUES
A simple queue is headed by a structure defined by the GG_SIMPLEQ_HEAD
macro. This structure contains a pair of pointers, one to the first
element in the simple queue and the other to the last element in the
simple queue. The elements are singly linked for minimum space and
pointer manipulation overhead at the expense of O(n) removal for
arbitrary elements. New elements can be added to the queue after an
existing element, at the head of the queue, or at the end of the queue.
A GG_SIMPLEQ_HEAD structure is declared as follows:
GG_SIMPLEQ_HEAD(HEADNAME, TYPE) head;
where HEADNAME is the name of the structure to be defined, and TYPE is
the type of the elements to be linked into the simple queue. A pointer
to the head of the simple queue can later be declared as:
struct HEADNAME *headp;
(The names head and headp are user selectable.)
The macro GG_SIMPLEQ_ENTRYk declares a structure that connects the
elements in the simple queue.
The macro GG_SIMPLEQ_HEAD_INITIALIZER provides a value which can be
used to initialize a simple queue head at compile time, and is used at
the point that the simple queue head variable is declared, like:
struct HEADNAME head = GG_SIMPLEQ_HEAD_INITIALIZER(head);
The macro GG_SIMPLEQ_INIT initializes the simple queue referenced by
head.
The macro GG_SIMPLEQ_INSERT_HEAD inserts the new element elm at the
head of the simple queue.
The macro GG_SIMPLEQ_INSERT_TAIL inserts the new element elm at the end
of the simple queue.
The macro GG_SIMPLEQ_INSERT_AFTER inserts the new element elm after the
ele- ment listelm.
The macro GG_SIMPLEQ_REMOVE removes elm from the simple queue.
The macro GG_SIMPLEQ_REMOVE_HEAD removes the first element from the
head of the simple queue. For optimum efficiency, elements being
removed from the head of the queue should explicitly use this macro
instead of the generic GG_SIMPLQ_REMOVE macro.
The macro GG_SIMPLEQ_EMPTY return true if the simple queue head has no
elements.
The macro GG_SIMPLEQ_FIRST returns the first element of the simple
queue head.
The macro GG_SIMPLEQ_FOREACH traverses the tail queue referenced by
head in the forward direction, assigning each element in turn to var.
The macro GG_SIMPLEQ_NEXT returns the element after the element elm.
SIMPLE QUEUE EXAMPLE
GG_SIMPLEQ_HEAD(simplehead, entry) head;
struct simplehead *headp; /* Simple queue head. */
struct entry {
...
GG_SIMPLEQ_ENTRY(entry) entries;/* Simple queue. */
...
} *n1, *n2, *np;
GG_SIMPLEQ_INIT(&head); /* Initialize the queue. */
n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
GG_SIMPLEQ_INSERT_HEAD(&head, n1, entries);
n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */
GG_SIMPLEQ_INSERT_TAIL(&head, n1, entries);
n2 = malloc(sizeof(struct entry)); /* Insert after. */
GG_SIMPLEQ_INSERT_AFTER(&head, n1, n2, entries);
/* Forward traversal. */
GG_SIMPLEQ_FOREACH(np, &head, entries)
np-> ...
/* Delete. */
while (GG_SIMPLEQ_FIRST(&head) != NULL)
GG_SIMPLEQ_REMOVE_HEAD(&head, entries);
if (GG_SIMPLEQ_EMPTY(&head)) /* Test for emptiness. */
printf("nothing to do\n");
LISTS
A list is headed by a structure defined by the GG_LIST_HEAD macro.
This structure contains a single pointer to the first element on the
list. The elements are doubly linked so that an arbitrary element can
be removed without traversing the list. New elements can be added to
the list after an existing element, before an existing element, or at
the head of the list. A LIST_HEAD structure is declared as follows:
GG_LIST_HEAD(HEADNAME, TYPE) head;
where HEADNAME is the name of the structure to be defined, and TYPE is
the type of the elements to be linked into the list. A pointer to the
head of the list can later be declared as:
struct HEADNAME *headp;
(The names head and headp are user selectable.)
The macro GG_LIST_ENTRY declares a structure that connects the elements
in the list.
The macro GG_LIST_HEAD_INITIALIZER provides a value which can be used
to initialize a list head at compile time, and is used at the point
that the list head variable is declared, like:
struct HEADNAME head = GG_LIST_HEAD_INITIALIZER(head);
The macro GG_LIST_INIT initializes the list referenced by head.
The macro GG_LIST_INSERT_HEAD inserts the new element elm at the head
of the list.
The macro GG_LIST_INSERT_AFTER inserts the new element elm after the
element listelm.
The macro GG_LIST_INSERT_BEFORE inserts the new element elm before the
element listelm.
The macro GG_LIST_REMOVE removes the element elm from the list.
The macro GG_LIST_EMPTY return true if the list head has no elements.
The macro GG_LIST_FIRST returns the first element of the list head.
The macro GG_LIST_FOREACH traverses the list referenced by head in the
forward direction, assigning each element in turn to var.
The macro GG_LIST_NEXT returns the element after the element elm.
LIST EXAMPLE
GG_LIST_HEAD(listhead, entry) head;
struct listhead *headp; /* List head. */
struct entry {
...
GG_LIST_ENTRY(entry) entries; /* List. */
...
} *n1, *n2, *np;
GG_LIST_INIT(&head); /* Initialize the list. */
n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
GG_LIST_INSERT_HEAD(&head, n1, entries);
n2 = malloc(sizeof(struct entry)); /* Insert after. */
GG_LIST_INSERT_AFTER(n1, n2, entries);
n2 = malloc(sizeof(struct entry)); /* Insert before. */
GG_LIST_INSERT_BEFORE(n1, n2, entries);
/* Forward traversal. */
GG_LIST_FOREACH(np, &head, entries)
np-> ...
/* Delete. */
while (GG_LIST_FIRST(&head) != NULL)
GG_LIST_REMOVE(LIST_FIRST(&head), entries);
if (GG_LIST_EMPTY(&head)) /* Test for emptiness. */
printf("nothing to do\n");
TAIL QUEUES
A tail queue is headed by a structure defined by the GG_TAILQ_HEAD
macro. This structure contains a pair of pointers, one to the first
element in the tail queue and the other to the last element in the tail
queue. The elements are doubly linked so that an arbitrary element can
be removed without traversing the tail queue. New elements can be added
to the queue after an existing element, before an existing element, at
the head of the queue, or at the end the queue. A GG_TAILQ_HEAD
structure is declared as follows:
TAILQ_HEAD(HEADNAME, TYPE) head;
where HEADNAME is the name of the structure to be defined, and TYPE is
the type of the elements to be linked into the tail queue. A pointer
to the head of the tail queue can later be declared as:
struct HEADNAME *headp;
(The names head and headp are user selectable.)
The macro GG_TAILQ_ENTRY declares a structure that connects the
elements in the tail queue.
The macro GG_TAILQ_HEAD_INITIALIZER provides a value which can be used
to initialize a tail queue head at compile time, and is used at the
point that the tail queue head variable is declared, like:
struct HEADNAME head = GG_TAILQ_HEAD_INITIALIZER(head);
The macro GG_TAILQ_INIT initializes the tail queue referenced by head.
The macro GG_TAILQ_INSERT_HEAD inserts the new element elm at the head
of the tail queue.
The macro GG_TAILQ_INSERT_TAIL inserts the new element elm at the end
of the tail queue.
The macro GG_TAILQ_INSERT_AFTER inserts the new element elm after the
element listelm.
The macro GG_TAILQ_INSERT_BEFORE inserts the new element elm before the
element listelm.
The macro GG_TAILQ_REMOVE removes the element elm from the tail queue.
The macro GG_TAILQ_EMPTY return true if the tail queue head has no
elements.
The macro GG_TAILQ_FIRST returns the first element of the tail queue
head.
The macro GG_TAILQ_FOREACH traverses the tail queue referenced by head
in the forward direction, assigning each element in turn to var.
The macro GG_TAILQ_FOREACH_REVERSE traverses the tail queue referenced
by head in the reverse direction, assigning each element in turn to
var.
The macro GG_TAILQ_NEXT returns the element after the element elm
TAIL QUEUE EXAMPLE
GG_TAILQ_HEAD(tailhead, entry) head;
struct tailhead *headp; /* Tail queue head. */
struct entry {
...
GG_TAILQ_ENTRY(entry) entries; /* Tail queue. */
...
} *n1, *n2, *np;
GG_TAILQ_INIT(&head); /* Initialize the queue. */
n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
GG_TAILQ_INSERT_HEAD(&head, n1, entries);
n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */
GG_TAILQ_INSERT_TAIL(&head, n1, entries);
n2 = malloc(sizeof(struct entry)); /* Insert after. */
GG_TAILQ_INSERT_AFTER(&head, n1, n2, entries);
n2 = malloc(sizeof(struct entry)); /* Insert before. */
GG_TAILQ_INSERT_BEFORE(n1, n2, entries);
/* Forward traversal. */
GG_TAILQ_FOREACH(np, &head, entries)
np-> ...
/* Reverse traversal. */
GG_TAILQ_FOREACH_REVERSE(np, &head, tailhead, entries)
np-> ...
/* Delete. */
while (GG_TAILQ_FIRST(&head) != NULL)
GG_TAILQ_REMOVE(&head, GG_TAILQ_FIRST(&head), entries);
if (GG_TAILQ_EMPTY(&head)) /* Test for emptiness. */
printf("nothing to do\n");
CIRCULAR QUEUES
A circular queue is headed by a structure defined by the
GG_CIRCLEQ_HEAD macro. This structure contains a pair of pointers, one
to the first element in the circular queue and the other to the last
element in the circular queue. The elements are doubly linked so that
an arbitrary element can be removed without traversing the queue. New
elements can be added to the queue after an existing element, before an
existing element, at the head of the queue, or at the end of the queue.
A GG_CIRCLEQ_HEAD structure is declared as follows:
GG_CIRCLEQ_HEAD(HEADNAME, TYPE) head;
where HEADNAME is the name of the structure to be defined, and TYPE is
the type of the elements to be linked into the circular queue. A
pointer to the head of the circular queue can later be declared as:
struct HEADNAME *headp;
(The names head and headp are user selectable.)
The macro GG_CIRCLEQ_ENTRY declares a structure that connects the
elements in the circular queue.
The macro GG_CIRCLEQ_HEAD_INITIALIZER provides a value which can be
used to initialize a circular queue head at compile time, and is used
at the point that the circular queue head variable is declared, like:
struct HEADNAME head = GG_CIRCLEQ_HEAD_INITIALIZER(head);
The macro GG_CIRCLEQ_INIT initializes the circular queue referenced by
head.
The macro GG_CIRCLEQ_INSERT_HEAD inserts the new element elm at the
head of the circular queue.
The macro GG_CIRCLEQ_INSERT_TAIL inserts the new element elm at the end
of the circular queue.
The macro GG_CIRCLEQ_INSERT_AFTER inserts the new element elm after the
element listelm.
The macro GG_CIRCLEQ_INSERT_BEFORE inserts the new element elm before
the element listelm.
The macro GG_CIRCLEQ_REMOVE removes the element elm from the circular
queue.
The macro GG_CIRCLEQ_EMPTY return true if the circular queue head has
no elements.
The macro GG_CIRCLEQ_FIRST returns the first element of the circular
queue head.
The macro GG_CICRLEQ_FOREACH traverses the circle queue referenced by
head in the forward direction, assigning each element in turn to var.
The macro GG_CICRLEQ_FOREACH_REVERSE traverses the circle queue
referenced by head in the reverse direction, assigning each element in
turn to var.
The macro GG_CIRCLEQ_LAST returns the last element of the circular
queue head.
The macro GG_CIRCLEQ_NEXT returns the element after the element elm.
The macro GG_CIRCLEQ_PREV returns the element before the element elm.
CIRCULAR QUEUE EXAMPLE
GG_CIRCLEQ_HEAD(circleq, entry) head;
struct circleq *headp; /* Circular queue head. */
struct entry {
...
GG_CIRCLEQ_ENTRY(entry) entries; /* Circular queue. */
...
} *n1, *n2, *np;
GG_CIRCLEQ_INIT(&head); /* Initialize the circular queue. */
n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
GG_CIRCLEQ_INSERT_HEAD(&head, n1, entries);
n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */
GG_CIRCLEQ_INSERT_TAIL(&head, n1, entries);
n2 = malloc(sizeof(struct entry)); /* Insert after. */
GG_CIRCLEQ_INSERT_AFTER(&head, n1, n2, entries);
n2 = malloc(sizeof(struct entry)); /* Insert before. */
GG_CIRCLEQ_INSERT_BEFORE(&head, n1, n2, entries);
/* Forward traversal. */
GG_CIRCLEQ_FOREACH(np, &head, entries)
np-> ...
/* Reverse traversal. */
GG_CIRCLEQ_FOREACH_REVERSE(np, &head, entries)
np-> ...
/* Delete. */
while (GG_CIRCLEQ_FIRST(&head) != (void *)&head)
GG_CIRCLEQ_REMOVE(&head, GG_CIRCLEQ_FIRST(&head), entries);
if (GG_CIRCLEQ_EMPTY(&head)) /* Test for emptiness. */
printf("nothing to do\n");
SEE ALSO
gg-tree(3)